Package 'simulatetimeseries'

Title: Simulate complex synthetic time series for benchmarks
Description: Simulate complex synthetic time series for benchmarks.
Authors: T. Moudiki
Maintainer: T. Moudiki <[email protected]>
License: MIT
Version: 0.2.0
Built: 2024-11-01 11:28:50 UTC
Source: https://github.com/thierrymoudiki/simulatetimeseries

Help Index


Get data 1

Description

Data from Task Views + synthetic

Usage

get_data_1(diffs = TRUE)

Arguments

diffs

return the differentiated series or not? (lag = 1)

Value

a list of time series objects


Simulate a univariate time series dataset 1

Description

Simulate a univariate time series dataset 1

Usage

simulate_time_series_1(
  n,
  trend = c("linear", "quadratic"),
  seasonality = c("none", "sinusoidal"),
  distribution = c("normal", "student"),
  noise_sd = 10,
  seed = 123
)

Arguments

n

numerical, number of data points

trend

string, "linear" or "quadratic"

seasonality

string, "none" or "sinusoidal"

distribution

string, "normal" and "student"

noise_sd

numerical, standard deviation of noise

seed

int, reproducibility seed

Value

a native time series object

Examples

ts_data <-
simulate_time_series_1(
  n = 100L,
  trend = "quadratic",
  seasonality = "sinusoidal",
  noise_sd = 2500,
  distribution = "normal"
)
plot(ts_data, type = "l", main = "Simulated Time Series")

Simulate a univariate time series dataset 2

Description

Simulate a univariate time series dataset 2

Usage

simulate_time_series_2(
  n,
  trend = c("linear", "sinusoidal"),
  seasonality = FALSE,
  noise_sd = 0.1,
  ar = 0,
  ma = 0,
  seed = 123
)

Arguments

n

numerical, number of data points

trend

string, "linear" or "sinusoidal"

seasonality

string, "none" or "sinusoidal"

noise_sd

numerical, standard deviation of noise

ar

autoregressive order

ma

moving average order

seed

int, reproducibility seed

Value

a native time series object

Examples

ts_data <-
simulate_time_series_2(
  n = 100L,
  trend = "sinusoidal",
  seasonality = TRUE,
  noise_sd = runif(n = 1, min = 20, max=50)
)
plot(ts_data, type = "l", main = "Simulated Time Series")

Simulate a univariate time series dataset 3

Description

Simulate a univariate time series dataset 3

Usage

simulate_time_series_3(n = 100, seed = 123)

Arguments

n

numerical, number of data points

seed

int, reproducibility seed

Value

a native time series object

Examples

print(simulate_time_series_3(10))

Simulate a univariate time series dataset 4

Description

Simulate a univariate time series dataset 4

Usage

simulate_time_series_4(n = 600, psi = 0.1, theta = 0.1, seed = 123)

Arguments

n

numerical, number of data points

psi

1st parameter for innovation variance (in [0, 1])

theta

2nd parameter for innovation variance (in [0, 1])

seed

int, reproducibility seed

Value

a native time series object

Examples

plot(simulate_time_series_4())