Prob. classifiers

rm(list=ls())
library(ggplot2)
library(learningmachine)
library(caret)
library(palmerpenguins)
library(mlbench)
library(skimr)
library(reshape2)
library(pROC)

1 - Using Classifier object

set.seed(43)
X <- as.matrix(iris[, 1:4])
# y <- factor(as.numeric(iris$Species))
y <- iris$Species

index_train <- base::sample.int(n = nrow(X),
                                 size = floor(0.8*nrow(X)),
                                 replace = FALSE)
X_train <- X[index_train, ]
y_train <- y[index_train]
X_test <- X[-index_train, ]
y_test <- y[-index_train]
dim(X_train)
## [1] 120   4
dim(X_test)
## [1] 30  4
obj <- learningmachine::Classifier$new(method = "ranger", 
                                       pi_method="kdesplitconformal", 
                                       type_prediction_set="score")
obj$get_type()
## [1] "classification"
obj$get_name()
## [1] "Classifier"
obj$set_B(10)
obj$set_level(95)

t0 <- proc.time()[3]
obj$fit(X_train, y_train)
cat("Elapsed: ", proc.time()[3] - t0, "s \n")
## Elapsed:  0.072 s
probs <- obj$predict_proba(X_test)
df <- reshape2::melt(probs$sims$setosa[1:3, ])
df$Var2 <- NULL 
colnames(df) <- c("individual", "prob_setosa")
df$individual <- as.factor(df$individual)
ggplot2::ggplot(df, aes(x=individual, y=prob_setosa)) + geom_boxplot() + coord_flip()

ggplot2::ggplot(df, aes(x=prob_setosa, fill=individual)) + geom_density(alpha=.3)

print(head(X_test))
##      Sepal.Length Sepal.Width Petal.Length Petal.Width
## [1,]          5.1         3.5          1.4         0.2
## [2,]          4.6         3.1          1.5         0.2
## [3,]          4.9         3.1          1.5         0.1
## [4,]          5.4         3.7          1.5         0.2
## [5,]          5.2         3.5          1.5         0.2
## [6,]          4.8         3.1          1.6         0.2
obj$summary(X_test, y=y_test, 
            class_name = "setosa",
            show_progress=FALSE)
## $Coverage_rate
## [1] 100
## 
## $citests
##                   estimate       lower        upper      p-value signif
## Sepal.Length -0.0393826289 -0.06047290 -0.018292358 0.0006522623    ***
## Sepal.Width   0.0608279754  0.02516647  0.096489483 0.0015709739     **
## Petal.Length -0.0247974949 -0.04713525 -0.002459736 0.0307883308      *
## Petal.Width  -0.0005907565 -0.04448090  0.043299382 0.9782267230       
## 
## $signif_codes
## [1] "Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## 
## $effects
## ── Data Summary ────────────────────────
##                            Values 
## Name                       effects
## Number of rows             30     
## Number of columns          4      
## _______________________           
## Column type frequency:            
##   numeric                  4      
## ________________________          
## Group variables            None   
## 
## ── Variable type: numeric ──────────────────────────────────────────────────────
##   skim_variable      mean     sd      p0       p25     p50     p75   p100 hist 
## 1 Sepal.Length  -0.0394   0.0565 -0.214  -0.0726   -0.0103 0.00220 0.0146 ▁▁▃▃▇
## 2 Sepal.Width    0.0608   0.0955 -0.0585  0.000681  0.0424 0.0668  0.386  ▆▇▁▁▁
## 3 Petal.Length  -0.0248   0.0598 -0.183   0         0      0       0.0200 ▁▁▁▁▇
## 4 Petal.Width   -0.000591 0.118  -0.251  -0.0194    0      0       0.416  ▁▇▂▁▁
print(head(X_test))
##      Sepal.Length Sepal.Width Petal.Length Petal.Width
## [1,]          5.1         3.5          1.4         0.2
## [2,]          4.6         3.1          1.5         0.2
## [3,]          4.9         3.1          1.5         0.1
## [4,]          5.4         3.7          1.5         0.2
## [5,]          5.2         3.5          1.5         0.2
## [6,]          4.8         3.1          1.6         0.2
obj$summary(X_test, y=y_test, 
            class_name = "setosa",
            show_progress=FALSE, type_ci="conformal")
## $Coverage_rate
## [1] 100
## 
## $citests
##                 estimate       lower        upper      p-value signif
## Sepal.Length -0.04839909 -0.08338775 -0.020769347 1.268525e-83    ***
## Sepal.Width   0.04417333  0.01045772  0.082093818 1.268525e-83    ***
## Petal.Length -0.01622663 -0.04373914  0.003726108 3.796181e-79    ***
## Petal.Width   0.02134761 -0.02100012  0.090062742 4.329317e-48    ***
## 
## $signif_codes
## [1] "Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## 
## $effects
## ── Data Summary ────────────────────────
##                            Values 
## Name                       effects
## Number of rows             30     
## Number of columns          4      
## _______________________           
## Column type frequency:            
##   numeric                  4      
## ________________________          
## Group variables            None   
## 
## ── Variable type: numeric ──────────────────────────────────────────────────────
##   skim_variable      mean     sd      p0       p25     p50     p75   p100 hist 
## 1 Sepal.Length  -0.0394   0.0565 -0.214  -0.0726   -0.0103 0.00220 0.0146 ▁▁▃▃▇
## 2 Sepal.Width    0.0608   0.0955 -0.0585  0.000681  0.0424 0.0668  0.386  ▆▇▁▁▁
## 3 Petal.Length  -0.0248   0.0598 -0.183   0         0      0       0.0200 ▁▁▁▁▇
## 4 Petal.Width   -0.000591 0.118  -0.251  -0.0194    0      0       0.416  ▁▇▂▁▁

2 - ranger classification

obj <- learningmachine::Classifier$new(method = "ranger", 
                                       type_prediction_set="score")
obj$set_level(95)
obj$set_pi_method("bootsplitconformal")
t0 <- proc.time()[3]
obj$fit(X_train, y_train)
cat("Elapsed: ", proc.time()[3] - t0, "s \n")
## Elapsed:  0.065 s
probs <- obj$predict_proba(X_test)
df <- reshape2::melt(probs$sims$setosa[1:3, ])
df$Var2 <- NULL 
colnames(df) <- c("individual", "prob_setosa")
df$individual <- as.factor(df$individual)
ggplot2::ggplot(df, aes(x=individual, y=prob_setosa)) + geom_boxplot() + coord_flip()

ggplot2::ggplot(df, aes(x=prob_setosa, fill=individual)) + geom_density(alpha=.3)

obj$summary(X_test, y=y_test, 
            class_name = "setosa",
            show_progress=FALSE)
## $Coverage_rate
## [1] 100
## 
## $citests
##                   estimate       lower        upper      p-value signif
## Sepal.Length -0.0393317322 -0.06040555 -0.018257914 0.0006557049    ***
## Sepal.Width   0.0608229848  0.02515105  0.096494916 0.0015763685     **
## Petal.Length -0.0237068539 -0.04523145 -0.002182253 0.0320241179      *
## Petal.Width   0.0008587577 -0.04423383  0.045951343 0.9691971509       
## 
## $signif_codes
## [1] "Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## 
## $effects
## ── Data Summary ────────────────────────
##                            Values 
## Name                       effects
## Number of rows             30     
## Number of columns          4      
## _______________________           
## Column type frequency:            
##   numeric                  4      
## ________________________          
## Group variables            None   
## 
## ── Variable type: numeric ──────────────────────────────────────────────────────
##   skim_variable      mean     sd      p0       p25      p50     p75   p100 hist 
## 1 Sepal.Length  -0.0393   0.0564 -0.214  -0.0727   -0.00980 0.00220 0.0139 ▁▁▃▃▇
## 2 Sepal.Width    0.0608   0.0955 -0.0584  0.000668  0.0424  0.0667  0.387  ▆▇▁▁▁
## 3 Petal.Length  -0.0237   0.0576 -0.164   0         0       0       0.0205 ▁▁▁▁▇
## 4 Petal.Width    0.000859 0.121  -0.249  -0.0198    0       0       0.423  ▁▇▁▁▁
obj$summary(X_test, y=y_test, 
            class_index = 2,
            show_progress=FALSE, type_ci="conformal")
## $Coverage_rate
## [1] 100
## 
## $citests
##                 estimate       lower         upper      p-value signif
## Sepal.Length  0.01534942 -0.03389839  0.0561332133 2.277079e-29    ***
## Sepal.Width  -0.05161609 -0.11256739  0.0042315822 3.449258e-82    ***
## Petal.Length -0.34157575 -0.84987879  0.0005713769 6.289611e-83    ***
## Petal.Width  -0.33286798 -0.78381161 -0.0717673138 1.268414e-83    ***
## 
## $signif_codes
## [1] "Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## 
## $effects
## ── Data Summary ────────────────────────
##                            Values 
## Name                       effects
## Number of rows             30     
## Number of columns          4      
## _______________________           
## Column type frequency:            
##   numeric                  4      
## ________________________          
## Group variables            None   
## 
## ── Variable type: numeric ──────────────────────────────────────────────────────
##   skim_variable     mean     sd     p0     p25      p50      p75  p100 hist 
## 1 Sepal.Length  -0.00212 0.0951 -0.271 -0.0357 -0.00147  0.0626  0.167 ▁▂▆▇▃
## 2 Sepal.Width   -0.0927  0.173  -0.797 -0.0919 -0.0709  -0.00538 0.128 ▁▁▂▇▇
## 3 Petal.Length  -0.426   0.903  -3.21  -0.192   0        0       0.240 ▁▁▁▁▇
## 4 Petal.Width   -0.499   1.20   -5.94  -0.432  -0.0667   0       0     ▁▁▁▁▇

3 - extratrees classification

obj <- learningmachine::Classifier$new(method = "extratrees", 
        pi_method = "bootsplitconformal", type_prediction_set="score")
obj$set_level(95)
t0 <- proc.time()[3]
obj$fit(X_train, y_train)
cat("Elapsed: ", proc.time()[3] - t0, "s \n")
## Elapsed:  0.084 s
probs <- obj$predict_proba(X_test)
df <- reshape2::melt(probs$sims$virginica[1:3, ])
df$Var2 <- NULL 
colnames(df) <- c("individual", "prob_virginica")
df$individual <- as.factor(df$individual)
ggplot2::ggplot(df, aes(x=individual, y=prob_virginica)) + geom_boxplot() + coord_flip()

ggplot2::ggplot(df, aes(x=prob_virginica, fill=individual)) + geom_density(alpha=.3)

obj$summary(X_test, y=y_test, 
            class_name = "virginica",
            show_progress=FALSE)
## $Coverage_rate
## [1] 100
## 
## $citests
##                  estimate       lower      upper      p-value signif
## Sepal.Length  0.036541255 -0.01605960 0.08914210 0.1660389146       
## Sepal.Width  -0.008665406 -0.08293934 0.06560852 0.8130836281       
## Petal.Length  0.367528646  0.17051921 0.56453808 0.0006587430    ***
## Petal.Width   0.657891051  0.31550619 1.00027591 0.0004837876    ***
## 
## $signif_codes
## [1] "Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## 
## $effects
## ── Data Summary ────────────────────────
##                            Values 
## Name                       effects
## Number of rows             30     
## Number of columns          4      
## _______________________           
## Column type frequency:            
##   numeric                  4      
## ________________________          
## Group variables            None   
## 
## ── Variable type: numeric ──────────────────────────────────────────────────────
##   skim_variable     mean    sd       p0      p25      p50    p75  p100 hist 
## 1 Sepal.Length   0.0365  0.141 -0.247   -0.0246   0.00605 0.0720 0.571 ▁▇▂▁▁
## 2 Sepal.Width   -0.00867 0.199 -0.378   -0.0921  -0.0117  0.0154 0.629 ▂▇▁▁▁
## 3 Petal.Length   0.368   0.528 -0.00377  0.00117  0.0920  0.525  1.63  ▇▁▁▁▁
## 4 Petal.Width    0.658   0.917  0        0.0426   0.388   0.678  4.17  ▇▁▁▁▁
obj$summary(X_test, y=y_test, 
            class_name = "setosa",
            show_progress=FALSE, type_ci="conformal")
## $Coverage_rate
## [1] 100
## 
## $citests
##                 estimate       lower        upper      p-value signif
## Sepal.Length -0.03641598 -0.06477761 -0.011290620 1.268525e-83    ***
## Sepal.Width   0.11048567  0.04625791  0.175973034 1.268525e-83    ***
## Petal.Length -0.06929349 -0.18575283  0.002268837 1.221611e-82    ***
## Petal.Width  -0.07934344 -0.29053977  0.035935321 2.173355e-58    ***
## 
## $signif_codes
## [1] "Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## 
## $effects
## ── Data Summary ────────────────────────
##                            Values 
## Name                       effects
## Number of rows             30     
## Number of columns          4      
## _______________________           
## Column type frequency:            
##   numeric                  4      
## ________________________          
## Group variables            None   
## 
## ── Variable type: numeric ──────────────────────────────────────────────────────
##   skim_variable    mean     sd      p0      p25      p50     p75   p100 hist 
## 1 Sepal.Length  -0.0310 0.0555 -0.171  -0.0616  -0.00914 0.00495 0.0525 ▂▂▃▇▅
## 2 Sepal.Width    0.118  0.161  -0.0922  0.00719  0.0673  0.240   0.565  ▇▇▆▁▂
## 3 Petal.Length  -0.0461 0.148  -0.756  -0.0701   0       0.0142  0.0681 ▁▁▁▁▇
## 4 Petal.Width   -0.0757 0.271  -1.38   -0.0676   0       0.0273  0.140  ▁▁▁▁▇

4 - Penguins dataset

library(palmerpenguins)
data(penguins)
penguins_ <- as.data.frame(palmerpenguins::penguins)

replacement <- median(penguins$bill_length_mm, na.rm = TRUE)
penguins_$bill_length_mm[is.na(penguins$bill_length_mm)] <- replacement

replacement <- median(penguins$bill_depth_mm, na.rm = TRUE)
penguins_$bill_depth_mm[is.na(penguins$bill_depth_mm)] <- replacement

replacement <- median(penguins$flipper_length_mm, na.rm = TRUE)
penguins_$flipper_length_mm[is.na(penguins$flipper_length_mm)] <- replacement

replacement <- median(penguins$body_mass_g, na.rm = TRUE)
penguins_$body_mass_g[is.na(penguins$body_mass_g)] <- replacement

# replacing NA's by the most frequent occurence
penguins_$sex[is.na(penguins$sex)] <- "male" # most frequent

# one-hot encoding for covariates
penguins_mat <- model.matrix(species ~., data=penguins_)[,-1]
penguins_mat <- cbind.data.frame(penguins_$species, penguins_mat)
penguins_mat <- as.data.frame(penguins_mat)
colnames(penguins_mat)[1] <- "species"

y <- penguins_mat$species
X <- as.matrix(penguins_mat[,2:ncol(penguins_mat)])

n <- nrow(X)
p <- ncol(X)

set.seed(1234)
index_train <- sample(1:n, size=floor(0.8*n))
X_train <- X[index_train, ]
y_train <- factor(y[index_train])
X_test <- X[-index_train, ][1:5, ]
y_test <- factor(y[-index_train][1:5])
obj <- learningmachine::Classifier$new(method = "extratrees", 
                                       type_prediction_set="score")
obj$set_pi_method("bootsplitconformal")
obj$set_level(95)
obj$set_B(10L)
t0 <- proc.time()[3]
obj$fit(X_train, y_train)
cat("Elapsed: ", proc.time()[3] - t0, "s \n")
## Elapsed:  0.15 s
probs <- obj$predict_proba(X_test)
df <- reshape2::melt(probs$sims[[1]][1:3, ])
df$Var2 <- NULL 
colnames(df) <- c("individual", "prob_Adelie")
df$individual <- as.factor(df$individual)
ggplot2::ggplot(df, aes(x=individual, y=prob_Adelie)) + geom_boxplot() + coord_flip()

ggplot2::ggplot(df, aes(x=prob_Adelie, fill=individual)) + geom_density(alpha=.3)

obj$summary(X_test, y=y_test, 
            class_name = "Adelie",
            show_progress=FALSE)
## $Coverage_rate
## [1] 100
## 
## $citests
##                        estimate         lower         upper    p-value signif
## islandDream        0.000000e+00           NaN           NaN        NaN       
## islandTorgersen   -1.778468e-02 -3.459725e-02 -9.721090e-04 0.04251686      *
## bill_length_mm     5.776485e-03 -5.537377e-03  1.709035e-02 0.22929028       
## bill_depth_mm      3.407051e-03 -1.958522e-03  8.772623e-03 0.15268182       
## flipper_length_mm -4.827102e-04 -1.785223e-03  8.198026e-04 0.36165192       
## body_mass_g       -2.325034e-05 -5.796378e-05  1.146310e-05 0.13646280       
## sexmale           -7.978043e-03 -2.213090e-02  6.174818e-03 0.19261298       
## year              -3.352928e-05 -8.057931e-05  1.352074e-05 0.11899484       
## 
## $signif_codes
## [1] "Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## 
## $effects
## ── Data Summary ────────────────────────
##                            Values 
## Name                       effects
## Number of rows             5      
## Number of columns          8      
## _______________________           
## Column type frequency:            
##   numeric                  8      
## ________________________          
## Group variables            None   
## 
## ── Variable type: numeric ──────────────────────────────────────────────────────
##   skim_variable           mean        sd         p0        p25         p50
## 1 islandDream        0         0          0          0          0         
## 2 islandTorgersen   -0.0178    0.0135    -0.0344    -0.0270    -0.0190    
## 3 bill_length_mm     0.00578   0.00911    0.000434   0.00100    0.00263   
## 4 bill_depth_mm      0.00341   0.00432   -0.00118    0.00175    0.00275   
## 5 flipper_length_mm -0.000483  0.00105   -0.00233   -0.000239  -0.0000659 
## 6 body_mass_g       -0.0000233 0.0000280 -0.0000606 -0.0000442 -0.00000943
## 7 sexmale           -0.00798   0.0114    -0.0223    -0.0184     0         
## 8 year              -0.0000335 0.0000379 -0.0000969 -0.0000349 -0.0000213 
##           p75        p100 hist 
## 1  0           0          ▁▁▇▁▁
## 2 -0.00591    -0.00263    ▃▃▃▁▇
## 3  0.00284     0.0220     ▇▁▁▁▂
## 4  0.00320     0.0105     ▂▇▁▁▂
## 5 -0.0000350   0.000258   ▂▁▁▁▇
## 6 -0.00000863  0.00000657 ▃▃▁▇▃
## 7  0           0.000842   ▅▁▁▁▇
## 8 -0.0000173   0.00000271 ▂▁▁▇▂

rvfl

obj <- learningmachine::Classifier$new(method = "rvfl", 
                                type_prediction_set="score")
obj$set_pi_method("bootsplitconformal")
obj$set_level(95)
obj$set_B(10L)
t0 <- proc.time()[3]
obj$fit(X_train, y_train)
cat("Elapsed: ", proc.time()[3] - t0, "s \n")
## Elapsed:  0.009 s
probs <- obj$predict_proba(X_test)
df <- reshape2::melt(probs$sims[[1]][1:3, ])
df$Var2 <- NULL 
colnames(df) <- c("individual", "prob_Adelie")
df$individual <- as.factor(df$individual)
ggplot2::ggplot(df, aes(x=individual, y=prob_Adelie)) + geom_boxplot() + coord_flip()

ggplot2::ggplot(df, aes(x=prob_Adelie, fill=individual)) + geom_density(alpha=.3)

obj$summary(X_test, y=y_test, 
            class_name = "Adelie",
            show_progress=FALSE)
## $Coverage_rate
## [1] 100
## 
## $citests
##                        estimate         lower         upper      p-value signif
## islandDream        0.4802248563  0.4780044748  0.4824452379 4.614437e-11    ***
## islandTorgersen   -0.2959594072 -0.3063930678 -0.2855257465 1.557925e-07    ***
## bill_length_mm     0.2003956489  0.1963455026  0.2044457951 1.684113e-08    ***
## bill_depth_mm      0.0508209573  0.0479212470  0.0537206676 1.067137e-06    ***
## flipper_length_mm -0.0224653400 -0.0227350465 -0.0221956335 2.097271e-09    ***
## body_mass_g       -0.0001692677 -0.0001723101 -0.0001662252 1.053542e-08    ***
## sexmale           -0.4310257052 -0.4393042529 -0.4227471575 1.373600e-08    ***
## year              -0.0102992883 -0.0110718998 -0.0095266769 3.181998e-06    ***
## 
## $signif_codes
## [1] "Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## 
## $effects
## ── Data Summary ────────────────────────
##                            Values 
## Name                       effects
## Number of rows             5      
## Number of columns          8      
## _______________________           
## Column type frequency:            
##   numeric                  8      
## ________________________          
## Group variables            None   
## 
## ── Variable type: numeric ──────────────────────────────────────────────────────
##   skim_variable          mean         sd        p0       p25       p50       p75
## 1 islandDream        0.480    0.00179     0.478     0.479     0.481     0.482   
## 2 islandTorgersen   -0.296    0.00840    -0.311    -0.294    -0.293    -0.292   
## 3 bill_length_mm     0.200    0.00326     0.198     0.199     0.200     0.200   
## 4 bill_depth_mm      0.0508   0.00234     0.0467    0.0512    0.0516    0.0521  
## 5 flipper_length_mm -0.0225   0.000217   -0.0226   -0.0226   -0.0226   -0.0224  
## 6 body_mass_g       -0.000169 0.00000245 -0.000173 -0.000169 -0.000169 -0.000168
## 7 sexmale           -0.431    0.00667    -0.442    -0.430    -0.429    -0.427   
## 8 year              -0.0103   0.000622   -0.0112   -0.0105   -0.0102   -0.00980 
##        p100 hist 
## 1  0.482    ▂▂▁▁▇
## 2 -0.289    ▂▁▁▂▇
## 3  0.206    ▇▇▁▁▃
## 4  0.0524   ▂▁▁▂▇
## 5 -0.0221   ▇▁▂▁▂
## 6 -0.000167 ▃▁▁▇▇
## 7 -0.426    ▃▁▁▇▇
## 8 -0.00972  ▃▁▃▃▇