Package 'crossvalidation'

Title: Generic cross-validation functions
Description: Generic functions for cross-validation of Statistical/Machine Learning models
Authors: T. Moudiki
Maintainer: T. Moudiki <[email protected]>
License: file LICENSE
Version: 0.5.0
Built: 2024-12-25 04:27:31 UTC
Source: https://github.com/Techtonique/crossvalidation

Help Index


Boxplots of cross-validation performances

Description

Boxplots of cross-validation performances

Usage

## S3 method for class 'cvsamples'
boxplot(x, ...)

Arguments

x

a list containing models cross-validation performances, using crossvalidation::create_samples

...

additional parameters to be passed to boxplot

Examples

## Not run: 
print("see vignettes")

## End(Not run)

Create a data structure of cross-validation results

Description

Create a data structure of cross-validation results

Usage

create_samples(..., model_names)

Arguments

...

list of cross-validation results for multiple models

model_names

model names

Value

a list of results to be used in plot

Examples

## Not run: 
print("see vignettes")

## End(Not run)

Generic cross-validation function

Description

Generic cross-validation

Usage

crossval_ml(
  x,
  y,
  fit_func = crossvalidation::fit_lm,
  predict_func = crossvalidation::predict_lm,
  fit_params = NULL,
  k = 5,
  repeats = 3,
  p = 1,
  seed = 123,
  eval_metric = NULL,
  cl = NULL,
  errorhandling = c("stop", "remove", "pass"),
  packages = c("stats", "Rcpp"),
  verbose = FALSE,
  show_progress = TRUE,
  ...
)

Arguments

x

input covariates' matrix

y

response variable; a vector

fit_func

a function for fitting the model

predict_func

a function for predicting values from the model

fit_params

a list; additional (model-specific) parameters to be passed to fit_func

k

an integer; number of folds in k-fold cross validation

repeats

an integer; number of repeats for the k-fold cross validation

p

a float; proportion of data in the training/testing set, default is 1 and must be > 0.5. If p < 1, a validation set error is calculated on the remaining 1-p fraction data

seed

random seed for reproducibility of results

eval_metric

a function measuring the test errors; if not provided: RMSE for regression and accuracy for classification

cl

an integer; the number of clusters for parallel execution

errorhandling

specifies how a task evalution error should be handled. If value is "stop", then execution will be stopped if an error occurs. If value is "remove", the result for that task will not be returned. If value is "pass", then the error object generated by task evaluation will be included with the rest of the results. The default value is "stop".

packages

character vector of packages that the tasks depend on

verbose

logical flag enabling verbose messages. This can be very useful for troubleshooting.

show_progress

show evolution of the algorithm

...

additional parameters

Examples

# dataset

set.seed(123)
n <- 1000 ; p <- 10
X <- matrix(rnorm(n * p), n, p)
y <- rnorm(n)

# linear model example -----

crossvalidation::crossval_ml(x = X, y = y,
                             k = 5L, repeats = 3L)


# randomForest example -----

require(randomForest)

# fit randomForest with mtry = 2

## Not run: 
crossvalidation::crossval_ml(x = X, y = y, k = 5L, repeats = 3L,
                  fit_func = randomForest::randomForest, predict_func = predict,
                  packages = "randomForest", fit_params = list(mtry = 2))

# fit randomForest with mtry = 4

crossvalidation::crossval_ml(x = X, y = y, k = 5L, repeats = 3L,
                  fit_func = randomForest::randomForest, predict_func = predict,
                  packages = "randomForest", fit_params = list(mtry = 4))

fit randomForest with mtry = 4, with a validation set

crossvalidation::crossval_ml(x = X, y = y, k = 5, repeats = 2, p = 0.8,
                  fit_func = randomForest::randomForest, predict_func = predict,
                  packages = "randomForest", fit_params = list(mtry = 4))


## End(Not run)

Generic cross-validation function for time series

Description

Generic cross-validation for univariate and multivariate time series

Usage

crossval_ts(
  y,
  x = NULL,
  fit_func = crossvalidation::fit_lm,
  predict_func = crossvalidation::predict_lm,
  fcast_func = NULL,
  fit_params = NULL,
  p = 1,
  initial_window = 5,
  horizon = 3,
  fixed_window = TRUE,
  level = c(80, 95),
  seed = 123,
  eval_metric = NULL,
  cl = NULL,
  errorhandling = c("stop", "remove", "pass"),
  packages = c("stats", "Rcpp"),
  verbose = FALSE,
  show_progress = TRUE,
  ...
)

Arguments

y

response time series; a vector or a matrix

x

input covariates' matrix (optional) for ML models

fit_func

a function for fitting the model (if validation of ML model)

predict_func

a function for predicting values from the model (if validation of ML model)

fcast_func

time series forecasting function (e.g forecast::thetaf)

fit_params

a list; additional (model-specific) parameters to be passed to fit_func

p

a float; percentage of original data in the training/testing procedure, default is 1 and must be > 0.5.

initial_window

an integer; the initial number of consecutive values in each training set sample

horizon

an integer; the number of consecutive values in test set sample

fixed_window

a boolean; if FALSE, all training samples start at 1

level

a numeric vector; confidence levels for prediction intervals.

seed

random seed for reproducibility of results

eval_metric

a function measuring the test errors; if not provided: RMSE for regression and accuracy for classification

cl

an integer; the number of clusters for parallel execution

errorhandling

specifies how a task evalution error should be handled. If value is "stop", then execution will be stopped if an error occurs. If value is "remove", the result for that task will not be returned. If value is "pass", then the error object generated by task evaluation will be included with the rest of the results. The default value is "stop".

packages

character vector of packages that the tasks depend on

verbose

logical flag enabling verbose messages. This can be very useful for troubleshooting.

show_progress

show evolution of the algorithm

...

additional parameters

Examples

require(forecast)
data("AirPassengers")

# Example 1 -----

res <- crossval_ts(y=AirPassengers, initial_window = 10,
horizon = 3, fcast_func = forecast::thetaf)
print(colMeans(res))


# Example 2 -----

## Not run: 
fcast_func <- function (y, h, ...)
{
      forecast::forecast(forecast::auto.arima(y, ...),
      h=h, ...)
}

res <- crossval_ts(y=AirPassengers, initial_window = 10, horizon = 3,
fcast_func = fcast_func)
print(colMeans(res))

## End(Not run)


# Example 3 -----

fcast_func <- function (y, h, ...)
{
      forecast::forecast(forecast::ets(y, ...),
      h=h, ...)
}

res <- crossval_ts(y=AirPassengers,
initial_window = 10, horizon = 3, fcast_func = fcast_func)
print(colMeans(res))


# Example 4 -----

xreg <- cbind(1, 1:length(AirPassengers))
res <- crossval_ts(y=AirPassengers, x=xreg, fit_func = crossvalidation::fit_lm,
predict_func = crossvalidation::predict_lm,
initial_window = 10,
horizon = 3,
fixed_window = TRUE)
print(colMeans(res))


# Example 5 -----

res <- crossval_ts(y=AirPassengers, fcast_func = forecast::thetaf,
initial_window = 10,
horizon = 3,
fixed_window = TRUE)
print(colMeans(res))


#' # Example 6 -----

xreg <- cbind(1, 1:length(AirPassengers))
res <- crossval_ts(y=AirPassengers, x=xreg, fit_func = crossvalidation::fit_lm,
predict_func = crossvalidation::predict_lm,
initial_window = 10,
horizon = 3,
fixed_window = TRUE)
print(colMeans(res))


# Example 7 -----

x <- ts(matrix(rnorm(50), nrow = 25))

fcast_func <- function(y, h = 5, type_forecast=c("mean", "median"))
{
 type_forecast <- match.arg(type_forecast)

 if (type_forecast == "mean")
 {
  means <- colMeans(y)
  return(list(mean = t(replicate(n = h, expr = means))))
 } else {
  medians <- apply(y, 2, median)
  return(list(mean = t(replicate(n = h, expr = medians))))
 }

}

print(fcast_func(x))

res <- crossval_ts(y = x, fcast_func = fcast_func, fit_params = list(type_forecast = "median"))
colMeans(res)

res <- crossval_ts(y = x, fcast_func = fcast_func, fit_params = list(type_forecast = "mean"))
colMeans(res)

# Example 8 -----

eval_metric <- function(predicted, observed)
{
  error <- observed - predicted

  res <- apply(error, 2, function(x) sqrt(mean(x ^ 2, na.rm = FALSE)))

  return(res)
}

res <- crossval_ts(y = x, fcast_func = fcast_func, fit_params = list(type_forecast = "mean"),
eval_metric = eval_metric)

colMeans(res)

Rolling origin evaluation on validation set (time series)

Description

Rolling origin evaluation on validation set (time series)

Usage

eval_ts(
  y,
  x = NULL,
  fit_func = crossvalidation::fit_lm,
  predict_func = crossvalidation::predict_lm,
  fcast_func = NULL,
  fit_params = NULL,
  q = 0.2,
  initial_window = 5,
  horizon = 3,
  fixed_window = TRUE,
  level = c(80, 95),
  seed = 123,
  eval_metric = NULL,
  cl = NULL,
  errorhandling = c("stop", "remove", "pass"),
  packages = c("stats", "Rcpp"),
  verbose = FALSE,
  show_progress = TRUE,
  ...
)

Arguments

y

response time series; a vector or a matrix

x

input covariates' matrix (optional) for ML models

fit_func

a function for fitting the model (if validation of ML model)

predict_func

a function for predicting values from the model (if validation of ML model)

fcast_func

time series forecasting function (e.g forecast::thetaf)

fit_params

a list; additional (model-specific) parameters to be passed to fit_func

q

a float; percentage of original data in the validation test.

initial_window

an integer; the initial number of consecutive values in each training set sample

horizon

an integer; the number of consecutive values in test set sample

fixed_window

a boolean; if FALSE, all training samples start at 1

level

a numeric vector; confidence levels for prediction intervals.

seed

random seed for reproducibility of results

eval_metric

a function measuring the test errors; if not provided: RMSE for regression and accuracy for classification

cl

an integer; the number of clusters for parallel execution

errorhandling

specifies how a task evalution error should be handled. If value is "stop", then execution will be stopped if an error occurs. If value is "remove", the result for that task will not be returned. If value is "pass", then the error object generated by task evaluation will be included with the rest of the results. The default value is "stop".

packages

character vector of packages that the tasks depend on

verbose

logical flag enabling verbose messages. This can be very useful for troubleshooting.

show_progress

show evolution of the algorithm

...

additional parameters

Examples

require(forecast)
data("AirPassengers")

# Example 1 -----

res <- eval_ts(y=AirPassengers, initial_window = 10,
horizon = 3, fcast_func = forecast::thetaf)
print(colMeans(res))


# Example 2 -----

## Not run: 
fcast_func <- function (y, h, ...)
{
      forecast::forecast(forecast::auto.arima(y, ...),
      h=h, ...)
}

res <- eval_ts(y=AirPassengers, initial_window = 10, horizon = 3,
fcast_func = fcast_func)
print(colMeans(res))

## End(Not run)


# Example 3 -----

fcast_func <- function (y, h, ...)
{
      forecast::forecast(forecast::ets(y, ...),
      h=h, ...)
}

res <- eval_ts(y=AirPassengers,
initial_window = 10, horizon = 3, fcast_func = fcast_func)
print(colMeans(res))


# Example 4 -----

xreg <- cbind(1, 1:length(AirPassengers))
res <- eval_ts(y=AirPassengers, x=xreg,
fit_func = crossvalidation::fit_lm,
predict_func = crossvalidation::predict_lm,
initial_window = 10,
horizon = 3,
fixed_window = TRUE)
print(colMeans(res))


# Example 5 -----

res <- eval_ts(y=AirPassengers, fcast_func = forecast::thetaf,
initial_window = 10,
horizon = 3,
fixed_window = TRUE)
print(colMeans(res))


#' # Example 6 -----

xreg <- cbind(1, 1:length(AirPassengers))
res <- eval_ts(y=AirPassengers, x=xreg,
fit_func = crossvalidation::fit_lm,
predict_func = crossvalidation::predict_lm,
initial_window = 10,
horizon = 3,
fixed_window = TRUE)
print(colMeans(res))


# Example 7 -----

x <- ts(matrix(rnorm(50), nrow = 25))

fcast_func <- function(y, h = 5, type_forecast=c("mean", "median"))
{
 type_forecast <- match.arg(type_forecast)

 if (type_forecast == "mean")
 {
  means <- colMeans(y)
  return(list(mean = t(replicate(n = h, expr = means))))
 } else {
  medians <- apply(y, 2, median)
  return(list(mean = t(replicate(n = h, expr = medians))))
 }

}

print(fcast_func(x))

res <- crossvalidation::eval_ts(y = x, fcast_func = fcast_func,
fit_params = list(type_forecast = "median"))
colMeans(res)

res <- crossvalidation::eval_ts(y = x, fcast_func = fcast_func,
fit_params = list(type_forecast = "mean"))
colMeans(res)

# Example 8 -----

eval_metric <- function(predicted, observed)
{
  error <- observed - predicted

  res <- apply(error, 2, function(x) sqrt(mean(x ^ 2, na.rm = FALSE)))

  return(res)
}

res <- crossvalidation::eval_ts(y = x, fcast_func = fcast_func,
fit_params = list(type_forecast = "mean"), eval_metric = eval_metric)

colMeans(res)

Fit linear model

Description

Fit linear model

Usage

fit_lm(x, y, ...)

Arguments

x

design matrix of dimension n * p.

y

vector of observations of length n, or a matrix with n rows.

...

additional parameters to be passed to .lm.fit

Value

a list

Examples

NULL

Linear model prediction

Description

Linear model prediction

Usage

predict_lm(fit_obj, newx)

Arguments

fit_obj

object adjusted by crossvalidation::fit_lm

newx

unseen data

Value

a vector or a matrix

Examples

NULL

Split a time series

Description

Split a time series

Usage

split_ts(y, p = 0.8, return_indices = FALSE)

Arguments

y

univariate or multivariate time series

p

proportion of data in training set

return_indices

return indices instead of time series?