Fit and forecast using caret+dynrmf

library(ahead)
library(forecast)
myfitfunc <- function(x, y) ahead::fit_func(x, y, method = "glmnet")
(obj1 <- ahead::dynrmf(USAccDeaths, h=20L, level=99))
##          Point Forecast    Lo 99     Hi 99
## Jan 1979       8247.686 7097.078  9398.294
## Feb 1979       7362.924 6212.316  8513.532
## Mar 1979       7687.229 6536.621  8837.837
## Apr 1979       8073.679 6923.071  9224.287
## May 1979       8707.181 7556.573  9857.789
## Jun 1979       9057.569 7906.961 10208.177
## Jul 1979       9735.000 8584.393 10885.608
## Aug 1979       9530.808 8380.200 10681.416
## Sep 1979       9008.646 7858.038 10159.254
## Oct 1979       8842.809 7692.201  9993.417
## Nov 1979       8571.219 7420.611  9721.827
## Dec 1979       8855.324 7704.716 10005.932
## Jan 1980       8377.531 7226.923  9528.139
## Feb 1980       7700.809 6550.201  8851.417
## Mar 1980       7718.974 6568.366  8869.582
## Apr 1980       7992.722 6842.114  9143.330
## May 1980       8442.950 7292.342  9593.558
## Jun 1980       8764.246 7613.638  9914.854
## Jul 1980       9227.023 8076.416 10377.631
## Aug 1980       9225.213 8074.605 10375.821
(obj2 <- ahead::dynrmf(USAccDeaths, fit_func = myfitfunc, predict_func = ahead::predict_func, h=20L, level=99))
## Loading required package: lattice
## glmnet 
## 
## 60 samples
##  3 predictor
## 
## No pre-processing
## Resampling: Rolling Forecasting Origin Resampling (10 held-out with no fixed window) 
## Summary of sample sizes: 10, 11, 12, 13, 14, 15, ... 
## Resampling results across tuning parameters:
## 
##   alpha  lambda        RMSE       Rsquared   MAE      
##   0.100  0.0006941739  0.5122709  0.8358795  0.4183879
##   0.100  0.0032220699  0.5122709  0.8358795  0.4183879
##   0.100  0.0149555236  0.5118254  0.8360817  0.4175054
##   0.100  0.0694173913  0.5122442  0.8353406  0.4157414
##   0.100  0.3222069884  0.5421835  0.8135049  0.4290090
##   0.325  0.0006941739  0.5124592  0.8367432  0.4186208
##   0.325  0.0032220699  0.5124592  0.8367432  0.4186208
##   0.325  0.0149555236  0.5124025  0.8389486  0.4180482
##   0.325  0.0694173913  0.5160884  0.8443188  0.4184223
##   0.325  0.3222069884  0.5579605  0.8331106  0.4413218
##   0.550  0.0006941739  0.5126591  0.8372040  0.4188718
##   0.550  0.0032220699  0.5126536  0.8372263  0.4188592
##   0.550  0.0149555236  0.5131014  0.8417733  0.4186649
##   0.550  0.0694173913  0.5206184  0.8515997  0.4208158
##   0.550  0.3222069884  0.5791056  0.8571081  0.4640557
##   0.775  0.0006941739  0.5127529  0.8374880  0.4189854
##   0.775  0.0032220699  0.5127664  0.8378484  0.4189569
##   0.775  0.0149555236  0.5137188  0.8444945  0.4190831
##   0.775  0.0694173913  0.5244526  0.8569988  0.4237475
##   0.775  0.3222069884  0.6060372  0.8779967  0.4906426
##   1.000  0.0006941739  0.5128106  0.8376175  0.4190546
##   1.000  0.0032220699  0.5128880  0.8385027  0.4190576
##   1.000  0.0149555236  0.5144611  0.8471345  0.4195163
##   1.000  0.0694173913  0.5274020  0.8624336  0.4260166
##   1.000  0.3222069884  0.6293602  0.8835106  0.5115017
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were alpha = 0.1 and lambda = 0.01495552.
##          Point Forecast    Lo 99     Hi 99
## Jan 1979       8226.504 7078.503  9374.506
## Feb 1979       7310.188 6162.187  8458.189
## Mar 1979       7652.958 6504.957  8800.959
## Apr 1979       8061.904 6913.903  9209.905
## May 1979       8719.391 7571.390  9867.392
## Jun 1979       9080.080 7932.079 10228.082
## Jul 1979       9778.292 8630.291 10926.293
## Aug 1979       9562.742 8414.740 10710.743
## Sep 1979       9015.270 7867.269 10163.272
## Oct 1979       8843.025 7695.024  9991.027
## Nov 1979       8564.907 7416.906  9712.909
## Dec 1979       8862.101 7714.100 10010.102
## Jan 1980       8355.486 7207.484  9503.487
## Feb 1980       7628.428 6480.427  8776.430
## Mar 1980       7655.038 6507.037  8803.039
## Apr 1980       7961.499 6813.498  9109.500
## May 1980       8449.506 7301.504  9597.507
## Jun 1980       8792.145 7644.143  9940.146
## Jul 1980       9283.498 8135.497 10431.499
## Aug 1980       9275.256 8127.255 10423.257
plot(obj1)

plot(obj2)